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Deep learning accelerated numerical simulation for
compressible fluids
1 E &
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In this report, we propose a deep learning-based approach to accelerate the
numerical computation and further improve the accuracy in simulating three-
dimensional compressible fluids. The proposed work utilizes 3D Euler transformer
networks to learn the interpolation coefficients for cell boundaries, which are applied
to approximate the boundary fluxes of fluid on coarser grids. Benefiting from learning
features of high-resolution fluid flow, our learned interpolation method yields finer
performance on coarse grids, thereby accelerating the fluid simulations and improving
the numerical accuracy. The numerical experiments confirm that the proposed method
improves performance in inference of coarse-grained dynamics.
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Lax pairs informed neural networks solving integrable systems
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we propose the Lax pairs informed neural networks (LPINNs) tailored for
integrable systems with Lax pairs by designing novel network architectures and loss
functions, comprising LPINN-v1 and LPINN-v2. The most noteworthy advantage of
LPINN-v1 is that it can transform the solving of complex integrable systems into the
solving of a simpler Lax pairs to simplify the study of integrable systems, and it not
only efficiently solves data-driven localized wave solutions, but also obtains spectral
parameters and corresponding spectral functions in Lax pairs. On the basis of LPINN-
v1, we additionally incorporate the compatibility condition/zero curvature equation of
Lax pairs in LPINN-v2, its major advantage is the ability to solve and explore high-
accuracy data-driven localized wave solutions and associated spectral problems for all
integrable systems with Lax pairs. The innovation of this work lies in the pioneering
integration of Lax pairs informed of integrable systems into deep neural networks,
thereby presenting a fresh methodology and pathway for investigating data-driven



localized wave solutions and spectral problems of Lax pairs.
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Machine Learning—-based Generalized Multiscale Finite Element
Method and its Application in Reservoir Simulation
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In multiscale modeling of subsurface fluid flow in heterogeneous porous media,
standard polynomial basis functions are replaced by multiscale basis functions, which
are used to predict pressure distribution. To produce such functions in the mixed
Generalized Multiscale Finite Element Method (GMsFEM), a number of Partial
Differential Equations (PDEs) must be solved, leading to significant computational
overhead. The main objective of the work presented in this talk was to investigate the
efficiency of Deep Learning (DL) models in reconstructing the multiscale basis
functions of the mixed GMSFEM. To achieve this, four standard models named
SkiplessCNN models were first developed to predict four different multiscale basis



functions (Basis 2 to 5). These predictions were based on two distinct datasets (initial
and extended) generated, with the permeability field being the sole input. Subsequently,
focusing on the extended dataset, three distinct skip connection schemes (FirstSkip,
MidSkip, and DualSkip) were incorporated into the SkiplessCNN architecture.
Following this developed four models - SkiplessCNN, FirstSkipCNN, MidSkipCNN,
and DualSkipCNN - were separately combined using linear regression and ridge
regression within the framework of Deep Ensemble Learning (DEL). Furthermore, the
reliability of the Dual-SkipCNN model was examined using Monte Carlo (MC) dropout.
Ultimately, two Fourier Neural Operator (FNO) models, operating on infinite-
dimensional spaces, were developed based on a new dataset for directly predicting
pressure distribution. Based on the results, sufficient data for the validation and testing
subsets could help decrease overfitting. Additionally, all three skip connections were
found to be effective in enhancing the performance of SkiplessCNN, with DualSkip
being the most effective among them. As evaluated on the testing subset, the combined
models using linear regression and ridge regression meaningfully outperformed the
individual models for all basis functions. The results also confirmed the robustness of
MC dropout for DualSkipCNN in terms of epistemic uncertainty. Regarding the FNO
models, it was discovered that the inclusion of an MLP in the original Fourier layers
significantly improved the prediction performance on the testing subset. Looking at this
work as an image (matrix)-to-image (matrix) problem, the developed data-driven
models through various techniques could potentially find applications beyond reservoir
engineering.
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This talk will present a novel domain decomposition (DD) for Physics-Data



Combined Neural Network (DD-PDCNN) based reduced order model (ROM). In this
method, the computational domain is partitioned into a number of subdomains, and a
Physics-Data Combined Neural Network (PDCNN) is constructed for each subdomain,
which not only represents the dynamics within its region but also considers interactions
with neighbouring subdomains. The interface conditions between subdomains are
considered by averaging solutions at the neighbourhoods, incorporating averaged
solutions, predicted solutions at current and next time levels into reduced governing
equations. The implicit coupling among the subdomains ensures global continuity and
establishes boundary conditions for each subdomain.

The performance of this new DD-PDCNN is compared with that of PDCNN
without domain decomposition, data-driven model and traditional Reduced Basis (RB)
model. The capability of this model is tested using a number of parametric nonlinear
problems, such as the Kortewegde Vries (KdV) equation, the two-dimensional
Kovasznay flow and the two-dimensional incompressible Navier—Stokes equation.

This talk will also cover basic knowledge of Al driven reduced order modelling
(ROM), physics-data combined machine learning based ROM and other topics in the
ROM community.
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